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The phase probability distributions associated with several types of phase information of possible use 
in protein structure analysis have been cast in the simplified representation, 

P(c0= Nexp (A cos ct+B sin a+ Ccos 2ct+D sin 2~). 

This formulation permits the combination of independent phase information from different sources 
by simple addition of the constant coefficients A, B, C and D which encode the phase information. 
Also, use of this form for the phase probability expedites numerical integration of the centroid phase 
integrals and makes analytic integration possible. In order to achieve the simplified representation 
for the isomorphous replacement method it was necessary to reformulate the error analysis for that 
method. A computational comparison of phase determination by various methods for isomorphous 
replacement substantiates the validity of the new approach. 

Introduction 

Crystal structure analyses usually proceed, by one 
means or another, to a trial structure which can then 
be refined to a best match between the calculated and 
observed intensities. This is not possible in protein 
structure analysis for the structural complexity and 
practical resolution limits make a satisfactory trial 
structure unobtainable in the early stages. Structural 
information must be obtained by direct interpretation 
of the electron density map. It is most important, then, 
that this Fourier synthesis be as accurate as possible. 

Blow & Crick (1959) have shown that the Fourier 
synthesis with minimal mean-square error is achieved 
by the use of coefficients defined by the centroid of the 
structure-factor probability distribution. In practice 
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this has been reduced to the centroid of the phase prob- 
ability distribution, assuming the amplitude to be fixed. 
The resulting Fourier synthesis has as coefficients 

I 2'~exp (ia) P(oOdo~ 
0 ,~=Fp ,~ (1) 

Ii P(c¢) da 

where Fp is a structure factor amplitude from the pro- 
tein crystal and P(a) da is the probability that its phase 
angle c¢ be between ~ and c¢ + d~. This formula has been 
implemented for the isomorphous replacement method 
by determining the phase probability distribution from 
the lack of closure errors in phase determinations (Blow 
& Crick, 1959; Dickerson, Kendrew & Strandberg, 
1961; Cullis, Muirhead, Perutz, Rossmann & North, 
1961). The extension to phase information from 
anomalous scattering has been made in a similar way 
by North (1965) and Matthews (1966). 
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The phase probability distributions formulated in this 
way are rather complicated transcendental functions. 
Storage of phase information other than in the most 
elementary form is space consuming, combination of 
phase information from various sources is difficult and 
evaluation of the integrals in (1) must be done numer- 
ically. By using an approximation for the lack of clo- 
sure error, Rossmann & Blow (1961) were able to rep- 
resent the phase probability distribution for the iso- 
morphous replacement method in a simplified form. 
This permitted easy storage of phase information and 
ready incorporation of information derived from addi- 
tional isomorphous replacements or from the 'heavy- 
atom' method. They also proposed an evaluation of 
the integrals by a three-dimensional table look-up. 

The developments below modify and extend the ideas 
of Rossmann & Blow. By redefinition of the error in 
the isomorphous replacement method a simplified re- 
presentation of the phase probability, 

P(e) = N exp (A cos c~ + B sin c~ + C cos 2~ + D sin 2c0, 

is found without approximation and its validity is 
established by computational tests. A, B, C and D are 
constant coefficients encoding the phase information 
and N is a non-essential normalization factor. Repre- 
sentations of this form are also derived for phase in- 
formation from anomalous scattering, direct methods, 
the partial structure method and non-crystallographic 
symmetry. Since the total probability is the product of 
the independent contributing probabilities, phase in- 
formation from various sources can be combined by 
simple addition of exponential coefficients. Finally, an 
analytic evaluation of the phase integrals of (1) is pre- 
sented. 

Isomorphous replacement phase information 

In an isomorphous replacement experiment the struc- 
ture factor amplitudes, Fp and F~r~, of the protein and 
thej th  heavy-atom derivative are measured. The heavy- 
atom parameters are found and from them the heavy- 
atom contribution, fj =J) exp (i~0j) = aj + i bj ,  to a struc- 
ture factor is calculated. One must then consider the 
probability of a protein phase angle ~ being consistent 
with these observations. A formally correct solution is 
obtained when Fp+fj=F/- / . .  In practice, of course, 
there are uncertainties in thdse values which in general 
prevent identity even for the correct solution. Conse- 
quently an evaluation of errors must be made before a 
proper assessment of phase probability can be achieved. 

The analysis of Blow & Crick treats the lack of clo- 
sure error in the above equation as residing in the deri- 
vative amplitude Fro'. Thus 

IFP +f~l = Fzc~+e~ 
which yields 

F2e+f~j+2Fp~ cos(c~_(0j)=F~9 ,2 ' .  + ej + 2FHjej (2) 

To obtain a simplified representation of this error, 

Rossmann & Blow considered the e'j z term in (2) to be 
negligible and proceeded from the approximation 

z 2 (~-~oj)=FZ~i+2FHle j (3) F e + f l + 2Fpfj cos 

An alternative to the Blow & Crick analysis, and a 
priori a no less legitimate procedure, is to take the 
error to formally lie in the derivative intensity F~.. Of 
course, this is really a lumped error with contributions 
from many sources, and its relationship to the substan- 
tive errors in individual measured and calculated quan- 
tities is readily demonstrated. The error equation which 
obtains with this lumped error is 

IFp+f j lZ=F~j+e j  
or 

F Z e + f ~ + 2 r p f j c o s ( c ~ - ~ o j ) = F ~ + e j .  (4) 

Expression (4), like (3), is in a form from which a sim- 
plified representation can be derived, but unlike (3) it 
is not an approximation. 

Assuming a Gaussian distribution of errors,* the 
probability distribution for isomorphous replacement 
phase information is 

Pis%(C0 = Nj exp (-e~(00/2E~) (5) 

where Ej is the standard deviation of the errors and Nj 
is a normalizing factor. Ej can be estimated from the 
centrosymmetric zones and refined from the set of ej at 
preliminary phase angles, just as can the standard devi- 
ation E~ associated with the distribution of ej. How- 
ever, since ej=e~(ej+2FI4) and E~ has been shown to 
be only slightly dependent on the measured intensities 
(Blow & Crick, 1959), E1 will necessarily be a function 
of structure factor amplitude. 

From the definition of e~ (4), the exponent in the 
probability distribution (5) may be evaluated. Upon 
squaring the error, 

e~(c0 = (FZe + f ~ -  F ~ )  z + 4(F~ + f ~ -  F~r)FpJ~COS(~ - q)j ) 
+ 4  2 2 (0~-(p:). F~,fj cos 2 

Then by utilizing the relationships 

cos 2 (0~- q)j) =½[1 + cos 2(c~- ~0j)], 

fj- cos (0c- ~0j) = aj cos c~ + bj sin 

and 

f~ cos 2 ( e -  ~0j) = (a~-b~) cos 20~ + 2ajb~ sin 2e 

this can be written as 

* It is worth noting that while in principle if the distribution 
of errors in Fm 2 is Gaussian then that of errors in Fm is not, 
and vice versa, in fact they are both nearly Gaussian. The ex- 
perimentally determined distributions of e~ and e/(computed 
from data of Green, Ingrain & Perutz, 1954) both approxim- 
ately follow Gaussian distributions. Further, if the distribution 
of errors in Fm 2 is assumed to be Gaussian and the distribution 
of errors in Fm is derived therefrom, the Taylor series expan- 
sions of the two distribution functions have low-order coef- 
ficients of about the same relative values. 
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~(~)=(F~e+f2_ 2 2 2 F~) + 2Fv f  ~ 

+ 4(F 2 +f~ - F2i)Fpa~ cos 0~ 

+ 4(F 2 + f } -  F~i)Fvb ~ sin c~ 

+ 2F2(a} - b~) cos 2c~ 

+ 4F2ai b~ sin 2c~. 

Now the exponent of (5) can be put into the simplified 
form, 

- ~ ( a ) / 2 E ~  = Kisot  q- Aisol cos c~ + Biso/sin a 

+ Ciso~ cos 2a + Diso~ sin 2a (6) 

where 

Fro) + 2Fv f  i . 
Kisoi = - 2E~ ' 

2(F 2 + J ' } -  F2,)Fp 
Aiso/:  E2 aj ; 

2(F 2 + f ~ -  F~rj)FP b~ ; 
Bisoi = -- E~ 

2F 2 
F2 ( a ~ - ~ )  and Dis%= E--~j (a~b~). Cis°~=-  E~- 

This result is similar to that given in equation (4) of 
Rossmann & Blow (1961). In fact the coefficient c~ of 
that equation is related to the coefficients above by 

Ais% cos ~ + Bisoi sin ~ = (4F2~ E'2/EZ)cj cos (0~- (pj) 

and d~ is likewise related to Ciso and Diso The results . t  F 
differ because of the formulations of error as defined 
in (3) and (4) above and in the choice of representation. 
The representation of equation (6) separates the phase- 
information parameters from the functions of phase 
angle ~ to facilitate combinations of phase information 
and expedite numerical integration of (1). These matters 
are discussed below. 

A n o m a l o u s  s c a t t e r i n g  p h a s e  i n f o r m a t i o n  

When measurements are made on the Friedel mates, 
F+ k and Fffk, of an anomalously scattering heavy-atom 
derivative, k, additional phase information is obtained. 
North (1965) and Matthews (1966) demonstrated that 
the lack of closure error in the anomalous scattering ex- 
periment is, for an assumed protein phase angle a, 

2Fp6~ 
es(a)=AHs+ ---F-e----sin (~ps-a) • (7) 

The anomalous scattering difference is AHs=(F+ k -  
F~k ). The contribution to the derivative structure fac- 
tor from the real parts of heavy-atom scattering fac- 
tors is fs with phase angle ~0s and the contribution from 
the imaginary parts has amplitude 6s. Fe is the ampli- 
tude of the vector sum F~+fk.  This is replaced by the 
constant value Fro, =½(F+k+F~k) as suggested by 

North. Matthews found that while the use of Fc is phys- 
ically more acceptable, 'calculations ushlg FH and Fe 
do not lead to widely divergent results.' 

The standard deviation Es of the distribution of er- 
rors can be estimated as discussed by North or found 
directly from the ek at preliminary phase angles. Having 
this information the probability distribution of c~ is 
given by 

Panok(~)=Nkexp(-~(oO/ZE~) . (8) 

Evaluation of es proceeds as in the isomorphous re- 
placement case. First, the squared error is 

4Fp6kA Hk 4F 2 62 
eak(~t) = A H 2 +  FH k sin (~og--~)+ - F},--~ 

× sin2 (g,~- ~). 

Then using the relationships 

sin z (~0s- a) = ½[1 - c o s  2(~os- a)], 

1 
sin (~os-~)= f~- [b~ cos a - a s  sin a] 

and 
1 

cos 2 (~os-~)= ~ [(a2- b~,) cos 2ct + 2asbs sin 2ct], 

this becomes 

Ferk + b, cos ~(c0=AH2k+ _ _ _ 2  2 2 4FprsAHs 
F~ k fsFHk 

4 FpfisAHs 
- - as sin 

f s  FHk 

2 2 2 Fprk 2 2 '2 2 (a~,-b~,) cos 2~ 
.f kFak 
4 2 2 

Fefk asbs sin 2~.  
f Fg, 

Thus the simplified form of the exponent in (8) is 

- ~(~)/2E~, = Kanok + Aano k cos 0¢ + aano k s i n ,  

+ Can% cos 2~ + Danok sin 2a (9) 

where 
2 2 2 2 AH k + (2Ferk/Fuk) 

Kan% = - 2 E~ 

2Fjr,rk AHs 
A a n % = -  fsFHkE2t " bs, 

2FpfisA Hs 
Ban%= fkFHkE 2 ate, 

C nok- 
f ~ k E g  

2F262 
and Dano k t'2i~v2 ~2 akbs. 

d k - - H k Z - ' k  
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Direct methods phase information 

The prospect of employing direct phase relations to 
proteins in conjunction with the isomorphous replace- 
ment method (Coulter, 1965; Karle 1966) presents the 
problem of combining this independent phase infor- 
mation with that from other methods. The most useful 
relation for non-centrosylnmetric structure analysis has 
been the tangent formula (Karle & Hauptman, 1956), 

?g [EkEh_k l  .'-sin ((X k "+" ~ h - k )  
k . ( 1 0 )  

tan @h)= E IEkEh-kl c o s  (~kAr-(Xh-0 
k 

The expected value of the phase angle for reflection h, 
(eh), is determined from those reflections with Miller 
indices k and h - k  for which the phase angles c% and 
eh-k are known. According to a generalization by Karle 
& Karle (1966) of a probability formula first described 
by Cochran (1955), the probability distribution of e is 

Ptan(~) = N exp [to cos (oc- @h))] (1 l) 
w h e r e  

a3 iEh[ {[E If_~Eh_k[ COS (~k-t-~h-k)] 2 Ic=2 0.23/2 k 

+[E IEkEh-kl sin (~kqLOCh-k)]2} 112" 
k 

The E's are normalizedstructure factors and an = E f t ,  
" i 

where fi  is the scattering factor of the j th  atom. This 
formulation is readily converted to the representation 
used for other phase information by expansion of the 
coslne of the difference between two angles. Thus 

tC COS (~Z-- @h)) = Atan cos <x + Bran sin cx (12) 

where 

A t a n = K  COS (0Ch) and Btan=K sin @h)- 

Partial structure phase information 

The partial structure method of phase determination, 
wherein the phase of an observed structure factor is 
taken as that calculated from only some of the atoms 
of the structure, has also been subjected to probability 
analysis. For some special proteins this method may 
be of use in the usual sense of a few heavy atoms com- 
prising the known portion. Moreover, Rossmann & 
Blow (1961) have suggested that it may also be used to 
refine and extend the partial structure of a protein de- 
termined by other means. 

According to Sim (1959) the probability of the phase 
angle of Fp being c~, given the partial structure factor 
contribution, FK = FK exp (ieK), of the atoms of known 
position is 

P p a r  (e)= N exp [Xcos (e--C~K)] (13) 

where 
X -  2FpFK 

27 

and X represents the contribution of the unknown 
atoms which is E.f  2 by Wilson statistics. Rossmann & 

u 

Blow proposed that inaccuracies in the 'known' partial 
structure be taken into account in S to yield 

X = E f ~ + - }  ~ S  2 ]~ o. k 2 fk  2 • 
u k 

Atoms of unknown position have scattering factor 
fu and those of 'known'  position have scattering factors 
fk and standard errors in position ae. If the isotropic 
positional errors are in absolute units, the magnitude of 
the reciprocal-space vector, S, is 2 sin 0/2. The probabil- 
ity formulation from partial structure computations 
is like that for the tangent formula and can be placed 
in the standard representation by 

Xcos (0C--0~K) = Apar cos ~+Bpar sin 

where 

(14) 

A p a r  = X c o s  0OK and B p a r  = X sin ~K • 

Non-crystallographic symmetry phase information 

Phase determination by use of non-crystallographic 
symmetry is another method that promises to be im- 
portant in protein structure analysis. Rossmann & Blow 
(1963) have developed equations expressing the phase 
information due to molecular symmetry within the 
asymmetric unit. A solution to these equations (Ross- 
mann & Blow, 1964), which has also formed the basis 
for a solution to the more general equations of Main & 
Rossmann (1966), uses the phase probability distribution 

Psym(~) = N exp (-e2(oO/2E 2) (15) 
where 

e(~) = [T~ exp [i(0~ + el)] + Au exp [i(2~ + Cu)] - St].  

The parameters, T~, q~, Au, q~u and S~ (as defined by 
Rossmann & Blow, 1963; 1964), of the lack of closure 
error for the ith reflection can be calculated from the 
structure amplitudes, rotational and translational dis- 
position of the molecules and a starting set of phases. 
A procedure has also been given for estimating the 
mean-square error, E 2. 

By trigonometric expansion of 82(00 this phase in- 
formation can also be cast in the standard form. The 
resulting expansion is 

- ez(oO/2E 2 = K s y m  + Asym cos a + Bsym sin 

+ Csym cos 20c + Dsym sin 20c (16) 

where 

K~ym= - ( T ~  2 + A~,,+ S~,)/2E 2 , 

A s y m  = --  T~[Au cos ( ¢ ~ -  ~0,) + S t c o s  qb~]/E 2 

Bsym = - T~[Au sin (¢~ - ~0,) + S t sin ¢~]/E 2 

Csym = - A,S~cos q)n/E 2 

and 

D s y m  = A,Si s i n  ( o J E  2 . 

A C 26B - 4 
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Similar phase information can be derived from the 
direct-space use of non-crystallographic symmetry, as 
by Muirhead, Cox, Mazzarella & Perutz (1967). How- 
ever, no probability distribution has yet been formu- 
lated for this information and the method for combi- 
nation of this with other phase information remains 
uncertain. 

Combination of phase information 

Phase information from the various methods and from 
the different derivatives is independent, so the overall 
phase probability is the product of the individual phase 
probabilities from (5), (8), (11), (13) and (15): 

P(~) =[II Piso,(~)l. [n P~%(~)]. 
j k 

P t a n ( ~ )  . e p a r ( ~ )  . e s ~ m ( ~ )  . 

Since the probability function for each source of infor- 
mation, s, has been put into the form 

P,(~t) = Ns exp (/2, + A, cos c~ + B, sin 

+ C s cos 2ct + D, cos 2~t) 

the combination of phase information is achieved by 
simply adding coefficients in the exponent, 

P(a) = I IP , (a)= N '  exp (£/2,  
s s 

+ Z  A s cos c~ + Z  B, sin c~ 
S S 

+ Z C~ cos 2e + Z D s sin 2e). 
S S 

The constant factor exp (£ K,) may be included in the 
S 

normalization factor, so 

P((x) = N exp (A cos ~ + B sin 

+ C cos 2c~+D sin 2c0 (17) 

where the coefficients A, B, C and D are obtained by 
summation from (6), (9), (12), (14) and (16). The nor- 
malization factor N is of no consequence as it cancels 
when the phase probability is used in (1). 

Two important advantages accrue from this formu- 
lation of the phase probabilities. First, the four coef- 
ficients A, B, C and D constitute a complete record of 
the phase information for a reflection. Second, inclu- 
sion of newly obtained phase information only requires 
additions to these coefficients. This obviates the 
need for trigonometric inversion to extract the angular 
parameters ~1 and 42 from the vector sums Cls and 
Dis of Rossmann & Blow (1961, equation 6). Without 
the simplified representation either the several observed 
and calculated parameters associated with each deri- 
vative or the complete phase probability curves must 
be stored. Then to include new information either a 
complete recalculation of phase probability or point- 

by-point multiplication of the probability curves is 
necessary. 

It is noteworthy that within the limits of the error 
models upon which they are based, the individual 
probability distributions correctly weight the phase in- 
formation from various sources. Thus a 'bad' isomor- 
phous derivative will have large standard errors, E, 
leading to broad phase probability distributions which 
will be de-emphasized on combination with the sharper 
distributions from derivatives with smaller E's. Simi- 
larly, the overall sharpness, and hence the weight, of 
the distributions from other sources derives from fac- 
tors which assess the worth of the phase information. 
For example, the weight of tangent-formula phase in- 
formation depends on the number of atoms, the magni- 
tude and number of the contributing terms and the 
consistency among the contributors. It may, of course, 
happen that other factors than those included in a prob- 
ability distribution will prove to be important. If an 
ad hoc weighting of a source of phase information is 
deemed necessary to account for such factors, the weight 
would best be applied to A, B, C and D so as to effect a 
change in the variance for that source. 

Evaluation of the phase integrals 

Inclusion of the formulation for the total phase prob- 
ability (17) in the definition of the coefficients for the 
'best Fourier' (1) produces the integrals 

(Q:/  {,2~[ 1 ) 
= ~ lsin exp (A cos ~ + B sin 

\03] t)0 \COS 

/lSa\ 
+ C cos 2c~+D sin2c0dc~. /18b| 

\18c] 

Numerical integration is facilitated by this form in 
that the trigonometric functions of the dummy vari- 
able c~ are separated from the other parameters. Conse- 
quently a short, exact table look-up for the sines and 
cosines is possible. 

Analytic integration of (18) is also possible. Letting 

S =  [ / ~  + B 2 , T=/C2--I-D 2 , 

tan a = - B/A and tan z = - D/C, 

(18), upon rearrangement, yields 

12=~ |sin exp [S cos (c~+a)l 
\Q3] do \ c o s  

[19a\ 
× exp [T cos (2oc-Fz)] d~. [19b] 

\19c] 

The exponentials in (19) are of the form exp(t cos u) 
which may be expanded in an infinite series of Bessel 
functions of imaginary argument 
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co 

exp (t cos u)=lo ( t )+  2 ~ In(t) cos nu . 
n = !  

This is but a special case of the expansion of the gen- 
erating function for Bessel coefficients and so the series 
is absolutely convergent, in this case for all values of 
t and u (Watson, 1952). Use of this expansion in (19) 
produces 

= 1 i /sin [Io(S)Io(T) 
\Q3] t]O \COS ~X 

/20a'\ 
+ 210(S) 2; In(T) cos n(Ze + r) [20b|  

,,= 1 \20c /  
oo 

+ 210(T) N Ira(S) cos rn(0c + or) 
m = l  

o o o o  

+ 4 If, '£ Im(S) In(T)  cos m(~ + or) cos n(2~ + r)]dc~, 
m = l n = l  

the integrands of which, being the products of absolute- 
ly convergent series, are absolutely convergent. The 
integrands are also uniformly convergent for S, T<  T' 
where T'  is any positive number, as can be seen by 
comparison with the series with cosine arguments of 
0 and S=  T =  T'. This justifies term-by-term integra- 
tion and assures the uniform convergence of the results 
(Whittaker & Watson, 1952). 

Integration of (20a) is performed first. Since 

cos  u cos  v =-~-[cos (u + v) + cos  (u - v)] 

the general term may be written 

2lm(S) ln(T)  {cos [(m + 2n)c~ + mcr + nr] 
+ cos [(m - 2n)0c + mo-- nr]}. 

Now taking note that 

i 
Zn 0 l = 1 ,2 ,  . . .  
0 COS (10 + 6)dO = 2~z cos fi l = 0 

term-by-term integration of (20a) yields non-vanishing 
integrals only for the first term and when m = 2 n  in the 
last term, and the result is 

Ql=2rclo(S)Io(T) 
c~ 

+ 4re 53 12n(S)In(T) cos n(2o'-  r) . (21 a) 
n = !  

By similar means (20b) and (20c) can be integrated to 
give 

(Q2) =2zclo(T)ll(S) sin ( _ a )  
Q3 cos 

oo 

+ 2~ ~ ln(T){I2n-l(S)  sin [ - c r + n ( 2 c r - r ) ]  
n = l  COS 

+ I z n - l ( S )  sin [ - c r - n ( 2 c r - r ) ] }  
COS 

or, upon expansion of the trigonometric terms and use 
of the identity 

lm-l(u) -- Im+l(u) = 2in_ Ira(u), 
U 

Q 3  COS 1 c 

oo 

+ 2~ r~ In(T){[hn-l(S)  + hn+l(S)] cos  n ( 2 G -  r) 
n = l  

sin (_o.) (_+) 4n I2n(S)s in  n(2o'- 'c)cos 
cos " S- sin ( - o)}.  

Unfortunately, the results (21) are not in closed form; 
however, these convergent series may be evaluated to 
any desired accuracy by inclusion of sufficient terms. 
This evaluation is expedited by use of recurrence rela- 
tions for the Bessel functions as well as for the sines 
and cosines. 

In the centrosymmetric case the phase of a struc- 
ture factor is constrained to two possible values. This 
constraint can be introduced into the phase integrals of 
(1) by modifying the integrands with a factor which is 
the sum of two delta functions, each centered at a per- 
missible phase angle. Then integration leads directly to 
the 'best Fourier' coefficient 

{ = Fp tanh A (22a) 

for pure real structure factors and 

~ = iFp tanh B (22b) 

for pure imaginary structure factors. The phases com- 
puted from (22) will be the same as those obtained by 
unconstrained evaluation of (1), but the figures of merit, 
or weights, will be higher as a result of the centrosym- 
metric constraint. 

C o m p u t a t i o n a l  t e s t s  

Since the simplified form used here to describe phase 
information from the method of isomorphous replace- 
ment involves a reformulation of the error analysis, the 
validity of the new analysis was checked by phase com- 
putations on a solved problem. The data and heavy- 
atom parameters from the 5.5/~ resolution structure 
analysis of Glycera hemoglobin (Padlan & Love, 1968) 
were used in the tests. Dr Hilary Muirhead's program 
(see Lipscomb, Coppola, Hartsuck, Ludwig, Muirhead, 
Searl & Steitz, 1966) for phase determination was 
modified to compute probability distributions and 
centroid phases by (1) the method of Blow & Crick 
(1959) as implemented by Dickerson, Kendrew & 
Strandberg (1961), (2) the method of Cullis, Muirhead, 
Perutz, Rossmann & North (1961) as programmed 
by Muirhead, ( 3 ) t h e  approximation method of 
Rossmann & Blow (1961) and (4) the method proposed 
in this paper. For each method the mean figure of merit, 
(m),  the mean absolute phase discrepancy, (lAd.l), 
and root-mean-square relative phase discrepancy, 
((Ac~/cos-lrn)2)l/2, were computed for five classes of 

A C 26B - 4* 
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structure factor  amplitude.  The Blow & Crick method 
was taken as the s tandard so that  A e and cos - lm are taken 
with respect to that  method.  Initial estimates of  the 
s tandard  deviation of  error,  E, for each method were 
refined, as a function of  Fp,  to the root-mean-square  
lack of  closure error  at the centroid phase angles ob- 
tained f rom the estimated E ' s .  Two cycles sufficed for 
convergence. 

The results of  these tests are shown in Table 1. Two 
tests were done with essentially the same comparat ive  
results: one using all five of  the available heavy-a tom 
derivatives of  Glycera hemoglobin;  the other using only 
two of the five (HAuCI4 and HgX).  It  is clear that  the 
proposed method  is entirely adequate for phase deter- 
mination.  Phases determined by this method are on 
the average, and especially for strong reflections, even 
nearer  the Blow & Crick phases than  are the phases 
determined by the proven method  of  Cullis et al. In  
both  cases the phase discrepancies are well within the 
s tandard  errors of  the phase angles. As shown by the 
mean  figures of  merit ,  phase probabil i ty distributions 
computed by the proposed method do tend to be some- 
what  broader  than  those f rom the methods  of  Blow & 
Crick or Cullis et al. part icularly for weak reflections. 

However,  inspection of  the actual distributions finds 
them fully reasonable.  On the other hand,  the disparity 
of  figures of  meri t  for the approximat ion  method  of  
Rossmann  & Blow, lower tharl in the Blow & Crick 
methQd for weak reflection and higher for  strong re- 
flections, is paralleled by several unreasonably fiat or 
spike-like phase probabil i ty distributions. 

Conclusion 

The proposed method  of  representat ion of  phase prob-  
ability distributions has several advantages over the 
usual procedures.  

(1) Phase informat ion  f rom various sources can all 
be treated under  one unified scheme. 

(2) A complete, ready-to-use record of  the phase in- 
format ion  for a reflection is contained in four  param-  
eters. 

(3) Newly obtained phase informat ion  can be com- 
bined with previous informat ion by simple addit ion of  
coefficients. 

(4) Numerical  integrat ion of  the phase integrals is 
facilitated. 

(5) The form is amenable  to analytic integration. 

Table 1. Comparison of  methods for isomorphous replacement phase computations on Glycera hemoglobin data 

Parameter and method 
Values for structure factor amplitude classes 

Total 1 2 3 4 5 
Reflections 

Total 542 72 126 148 120 76 
Acentric 421 43 106 127 92 53 

Mean structure factor amplitude, (Fv) 33.7 7.9 17.9 29.8 45.7 73.1 
Two-derivative case 

Mean figure of merit, (m) 
BC, DKS a 0.73 0.59 0.74 0"71 0.83 0"73 
CMPRN, M b 0.75 0.61 0.78 0-74 0-83 0.76 
RB c 0"66 0.31 0.59 0"64 0.87 0-81 
HL a 0"72 0"55 0"73 0"70 0"82 0-73 

Mean phase discrepancy,* (IA~tl) 
CMPRN, M 5.0 ° 11-8 ° 4.3 ° 4-4 ° 2-9 ° 5.9 ° 
RB 8.3 16.1 8.1 7.1 6.8 8.0 
HL 4.5 11.4 5.0 3-6 2.9 2-6 

R.m.s. relative phase discrepancy,* ((Ao¢/cos-lm)2) 1/2 
CMPRN, M 0"19 0"37 0"16 0"16 0-13 0-19 
RB 0-35 0.58 0"37 0"30 0"29 0.28 
IlL 0"19 0"31 0.23 0"13 0-15 0"12 

Five-derivative case 
Mean figure of merit 

BC, DKS 0.87 0.73 0.88 0-89 0.91 0-86 
CMPRN, M 0"86 0-75 0"87 0"88 0-89 0"87 
RB 0.84 0.58 0-80 0.87 0.93 0-93 
HL 0-84 0.69 0.83 0.86 0.90 0.84 

Mean phase discrepancy* 
CMPRN, M 6.1 ° 10.1 ° 6.7 ° 5.3 ° 5-2 ° 5.0 ° 
RB 7.7 12.2 8.1 7.8 5.9 5.8 
HL 4.7 10.4 6.1 4-2 2.4 2.3 

R.m.s. relative phase discrepancy* 
CMPRN, M 0.41 0.72 0.39 0.36 0.37 0.29 
RB 0.62 0.81 0.78 0.62 0.35 0.34 
IlL 0.35 0.44 0.47 0.35 ' 0-19 0-12 

(a) Method of Blow & Crick (1959) and Dickerson, Kendrew & Strandberg (1961); (b) method of Cullis et al. (1961) and Muir- 
head (Lipscomb et al., 1966); (c) method of Rossmann & Blow (1961); (d) method proposed here. 

* Computed over acentric reflections only. 
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Note added in proof:- We have recently learned that 
the distribution exp(x cos ~), which is fundamental to 
the phase probability distributions above, was first 
derived by von Mises (1918) from the principle of 
maximum likelihood of Gauss. Its relation to the 
Gaussian distribution has prompted statisticians to 
refer to it as the circular normal distribution. A review 
of the properties and applications of it and other cir- 
cular distributions has been written by Batschelet 
(1965). 
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The Crystal Structure of N-Benzyl-4-methylthiazolium Bromide 
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The crystal structure of N-benzyl-4-methylthiazolium bromide, Ca aNSH~zBr, was determined from 
three-dimensional X-ray diffraction data. The crystals are monoclinic and the space group is P2~/c 
with four molecules per unit cell. The axial dimensions are a=9.162+_0.003, b= 11-770+0.004 and 
c= 11.070+ 0.004/~,/~= 81.93 + 0"04 °. The structure was solved by the heavy-atom method and refined 
by means of full-matrix least squares. The final R value was 0.056 on 1991 reflections which included 
221 unobserved. The bond lengths in the thiazolium ring are compared with those in thiamine and 
thiamine pyrophosphate. The conformation of the rings in this molecule differs substantially from 
that observed for the other two molecules. A weak CH. . .Br  bifurcated hydrogen bond occurs in the 
structure. Another interaction is observed between the sulfur atom and the bromide ion as the Br . . .  S 
interatomic distances average 0-3/~ less than the sum of their van der Waals radii. 

Introduction 

Breslow & McNelis (1958) have pointed out that in a 
number of biochemical reactions involving thiamine 

* Permanent address: The University of Townsville, Pimlico, 
Townsville, Queensland, Australia. 

pyrophosphate (TPP) as coenzyme the thiazolium 
zwitterion is the site of primary reaction. It was shown 
that the attachment of an aromatic ring on the N- 
methylene group of a thiazolium ring facilitates the 
formation of the catalytic zwitterion due to the induc- 
tive effect of the aromatic ring. The N-benzyl thiazo- 
lium salt and TPP are both effective catalysts to these 


